Stat 821 Homework 2 Solution

Question 5.10

(a) x : number of failures before getting the mth success.

$$
\begin{equation*}
f(x)=\binom{m+x-1}{m-1} p^{m}(1-p)^{x} I_{(0,1,2, \ldots)} \tag{*}
\end{equation*}
$$

There are $\mathrm{m}-1$ success out of the first $\mathrm{m}+\mathrm{x}-1$ trials, the probability of which is $\binom{m+x-1}{m-1} p^{m}(1-p)^{x}$. And the last trial must be a success, with probability p. And trials are independent to each other, so result in (*)
(b)

$$
\sum_{x=0}^{\infty}\binom{m+x-1}{m-1} p^{m}(1-p)^{x}=p^{m} \sum_{x=0}^{\infty}\binom{m+x-1}{m-1}(1-p)^{x}
$$

We know

$$
\begin{aligned}
\binom{-m}{x} & =\frac{(-m)(-m-1) \ldots(-m-k) \ldots}{x!(-m-x)(-m-x-1) \ldots(-m-x-k) \ldots} \\
& =\frac{m(m+1) \ldots(m+x-1)(-1)^{x}}{x!} \\
& =\binom{m+x-1}{m-1}(-1)^{x}
\end{aligned}
$$

So

$$
\begin{aligned}
& p^{m} \sum_{x=0}^{\infty}\binom{m+x-1}{m-1}(1-p)^{x} \\
= & p^{m} \sum_{x=0}^{\infty}\binom{-m}{x}(-1)^{x}(1-p)^{x} \\
= & p^{m}(1+p-1)^{-m} \\
= & 1
\end{aligned}
$$

(c)

$$
f(x)=\binom{m+x-1}{m-1} e^{m \log p+x \log (1-p)}
$$

is in form of (5.1) with

$$
\eta(p)=\log (1-p) \quad B(p)=-m \log (p) \quad h(x)=\binom{m+x-1}{m-1}
$$

Thus it is one-parameter exponential family.
(d) Write the pdf in canonical form

$$
f(x)=\binom{m+x-1}{m-1} e^{x \log (1-p)+m \log \left(1-e^{\eta}\right)}
$$

where

$$
\eta=\log (1-p) \quad T=X \quad A=-m \log \left(1-e^{\eta}\right)
$$

By theorem 5.10,

$$
M_{x}(u)=\frac{e^{A(\eta+u)}}{e^{A(\eta)}}=\left[\frac{1-e^{\eta}}{1-e^{\eta+u}}\right]^{m}
$$

so

$$
M_{x}(u)=\left[\frac{p}{1-(1-p) e^{u}}\right]^{m}
$$

(e) An application of theorem 5.8 gives

$$
\begin{aligned}
E(X) & =\frac{d}{d \eta} A(\eta) \\
& =-m \frac{-e^{\eta}}{1-e^{\eta}} \\
& =\frac{m(1-p)}{p} \\
\operatorname{Var}(X) & =\frac{d^{2}}{d \eta^{2}} A(\eta) \\
& =\frac{m e^{\eta}}{\left(1-e^{\eta}\right)^{2}} \\
& =\frac{m(1-p)}{p^{2}}
\end{aligned}
$$

Question 5.12

$$
P(X=x)=\frac{a(x) \theta^{x}}{c(\theta)}=a(x) e^{x \log \theta-\log c(\theta)}
$$

Let

$$
\eta=\log \theta \quad \theta=e^{\eta} \quad c(\theta)=c\left(e^{\eta}\right) \quad T=x \quad A(\eta)=\log c\left(e^{\eta}\right)
$$

This is in form of (5.1). The MGF is

$$
\begin{aligned}
M_{x}(u) & =e^{\log c\left(e^{\eta+u}\right)-\log c\left(e^{\eta}\right)} \\
& =\frac{c\left(\theta e^{u}\right)}{c(\theta)}
\end{aligned}
$$

Question 5.18

(b) For normal $N\left(\mu, \sigma^{2}\right)$, we have

$$
\begin{aligned}
p(x \mid \theta) & =\frac{1}{\sqrt{2 \pi}} \exp \left\{-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}-\log \sigma\right\} \\
& =\frac{1}{\sqrt{2 \pi}} \exp \left\{-\frac{x^{2}}{2 \sigma^{2}}+\frac{u x}{\sigma^{2}}-\left(\frac{u^{2}}{2 \sigma^{2}}+\log \sigma\right)\right\}
\end{aligned}
$$

So

$$
\begin{gathered}
h(x)=\frac{1}{\sqrt{2 \pi}} \quad \eta_{1}=-\frac{1}{2 \sigma^{2}} \quad T_{1}(x)=x^{2} \quad \eta_{2}=\frac{u}{\sigma^{2}} \quad T_{2}(x)=x \\
E\left[g^{\prime}(x)\right]=-E\left[g(x)\left(-x / \sigma^{2}+u / \sigma^{2}\right)\right] \\
\sigma^{2} E\left[g^{\prime}(x)\right]=-E[g(x)(x-u)]
\end{gathered}
$$

Let $g(x)=x^{2}$, then we have

$$
\begin{aligned}
& \sigma^{2} E(2 X)=E\left[X^{2}(X-\mu)\right] \Rightarrow 2 \sigma^{2} \mu=E\left(X^{3}\right)-\mu E\left(X^{2}\right) \\
\Rightarrow & E\left(X^{3}\right)=2 \sigma^{2} \mu+\mu E\left(X^{2}\right)=2 \sigma^{2} \mu+\mu\left(\mu^{2}+\sigma^{2}\right)=3 \sigma^{2} \mu+\mu^{3}
\end{aligned}
$$

Let $g(x)=x^{3}$, then we have

$$
\sigma^{2} E\left(3 X^{2}\right)=E\left(X^{3}(X-\mu)\right)=E\left(X^{4}\right)-\mu E\left(X^{3}\right)
$$

Thus

$$
E\left(X^{4}\right)=3 \sigma^{2} E\left(X^{2}\right)+\mu E\left(X^{3}\right)=6 \sigma^{2} \mu^{2}+\mu^{4}+3 \sigma^{4}
$$

Question 5.28

(a) A is a fixed sample space, so it is not decided by θ. From (5.1),

$$
p(x \mid \theta)=\exp \left(\sum_{i=1}^{s} \eta_{i}(\theta) T_{i}(\theta)-B(\theta)\right) h(x)
$$

is the unrestricted distribution. Based on this, we have the truncated distribution as

$$
\frac{\exp \left(\sum_{i=1}^{s} \eta_{i}(\theta) T_{i}(\theta)-B(\theta)\right) I_{A}(x) h(x)}{p_{\theta}(A)}=\exp \left(\sum_{i=1}^{s} \eta_{i}(\theta) T_{i}(\theta)-B(\theta)-\log p_{\theta}(A)\right) I_{A}(x) h(x)
$$

with new

$$
B^{\prime}(\theta)=B(\theta)+\log p_{\theta}(A) \quad h^{\prime}(\theta)=I_{A}(x) h(x)
$$

Thus the truncated distribution is again in (5.1) form.
(b) We need

$$
\left\{\eta=\left(\eta_{1}, \ldots, \eta_{s}\right): \int e^{\sum \eta_{i} T_{i}(x)} h(x) d \mu<\infty\right\}
$$

Consider $\exp (\lambda)$ with pdf $f(x)=\lambda e^{-\lambda x}$. Truncate it within $x \in[0,1]$,

$$
f^{*}(x)=\frac{\lambda e^{-\lambda x}}{-e^{-\lambda}+1} I_{[0,1]}(x)
$$

To get

$$
\int_{0}^{1} \frac{\lambda e^{-\lambda x}}{-e^{-\lambda}+1} d x<\infty
$$

λ can take any nonzero values, i.e. the natural parameter space is

$$
\{\lambda: \lambda \in R, \lambda \neq 0\}
$$

However for the original distribution, we need $\lambda>0$ to make $\int_{0}^{\infty} \lambda e^{-\lambda x} d x<$ ∞, i.e. $\{\lambda: \lambda>0\}$. The original natural parameter space is a subset of the parameter space of the truncated family.

Question 5.33

(a)

$$
f(y)=\frac{\Gamma(1)}{\Gamma\left(\frac{1}{2}+\frac{\theta}{\pi}\right) \Gamma\left(\frac{1}{2}-\frac{\theta}{\pi}\right)} y^{-\frac{1}{2}+\frac{\theta}{\pi}}(1-y)^{-\frac{1}{2}-\frac{\theta}{\pi}}=\frac{\cos (\theta)}{\pi} y^{-\frac{1}{2}+\frac{\theta}{\pi}}(1-y)^{-\frac{1}{2}-\frac{\theta}{\pi}}
$$

Let $x=\frac{1}{\pi} \log \left(\frac{y}{1-y}\right)$, then $y=\frac{e^{\pi x}}{1+e^{\pi x}}$ and $|J|=\frac{\pi e^{\pi x}}{\left(1+e^{\pi x}\right)^{2}}$.

$$
\begin{aligned}
f(x) & =\frac{\cos (\theta)}{\pi}\left(\frac{e^{\pi x}}{1+e^{\pi x}}\right)^{-\frac{1}{2}+\frac{\theta}{\pi}}\left(1-\frac{e^{\pi x}}{1+e^{\pi x}}\right)^{-\frac{1}{2}-\frac{\theta}{\pi}} \frac{\pi e^{\pi x}}{\left(1+e^{\pi x}\right)^{2}} \\
& =\frac{e^{\theta x+\log (\cos \theta)}}{2 \cosh (\pi x / 2)}
\end{aligned}
$$

The last equality holds since

$$
\cosh (\pi x / 2)=\frac{1}{2}\left(e^{\pi x / 2}+e^{-\pi x / 2}\right)
$$

This is in form (5.1).
(b) $s=1 \quad T=x \quad B(\theta)=-\log (\cos \theta) \quad \eta(\theta)=\theta$.

Apply Theorem 5.8,

$$
\begin{aligned}
& E_{\theta}(T(X))=E(X)=\frac{d}{d \eta} A(\eta)=\tan (\theta)=\mu \\
& \operatorname{Var}_{\theta}(T(X))=\frac{d^{2}}{d \eta^{2}} A(\eta)=\frac{1}{\cos ^{2} \eta}=1+\mu^{2}
\end{aligned}
$$

Another approach to (b) is the following:

$$
\begin{aligned}
\mathrm{MGF} \text { of } \mathrm{X} & =E\left(e^{t X}\right) \\
& =\int_{R} h(x) e^{(\theta+t) x-B(\theta)} d x \\
& =e^{-B(\theta) e^{B(\theta+t)}} \\
& =\frac{\cos (\theta)}{\cos (\theta+t)} \quad \text { for } \quad|\theta+t|<\frac{\pi}{2}
\end{aligned}
$$

Thus

$$
E(X)=\left.\cos (\theta) \frac{\sin (\theta+t)}{\cos ^{2}(\theta+t)}\right|_{t=0}=\tan (\theta)
$$

$$
\begin{aligned}
E\left(X^{2}\right) & =\left.\cos \theta\left[\frac{d}{d t} \tan (\theta+t) \sec (\theta+t)\right]\right|_{t=0} \\
& =\cos \theta\left[\sec ^{3}(\theta)+(\tan \theta) \sec \theta \tan \theta\right] \\
& =\sec ^{2} \theta+\tan ^{2} \theta
\end{aligned}
$$

Thus

$$
\operatorname{Var}(X)=\sec ^{2}(\theta)=1+(E X)^{2}
$$

